
International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018   

www.iiardpub.org 

 

 

 

 

IIARD – International Institute of Academic Research and Development 

 
Page 48 

A Technique for Optimization of Semantic Query in XML 

Databases 

 

 

Idayana Alabere, & E. O. Bennett 

Department of Computer Science,  

Rivers State University,  

Port Harcourt,  

Nigeria. 

alabereidayana@gmail.com, bennett.okoni@ust.edu.ng 

 

Abstract 

The increasing volume of XML data reduces the degree of efficiency in the retrieval of data 

from XML databases. It is therefore necessary to devise efficient methodologies and tools to 

transform, store and retrieve data making them as efficient as possible to minimize the time the 

users wait for response or the time application programs are delayed. The direct indexing and 

multilevel indexing techniques were produced using the constructive research methodology 

and object-oriented design methodology. Firstly, the XML nodes at each level were classified 

according to their data types. Secondly, from the index of each classification, new nodes were 

generated and the indexes were stored as an array, enabling access to the content of a node 

through the array. Java programming language was used for the implementation of the system. 

Experiments were conducted to evaluate the performance of the direct and multilevel indexing 

techniques in XML query optimization before and after applying the techniques. The results 

gotten after comparing the performance of the direct and multilevel indexing techniques and 

the performance where these techniques are not applicable in an XML database system shows 

the efficiency of these techniques in the retrieval of data in XML database system. 

 

Key words: Optimization, Query, Semantic, XML 

 

1. Introduction 

The extensible Markup Language (XML) is a recommended standard of the World Wide Web 

Consortium (W3C) that is increasingly being used for various forms of data exchange between 

differing data sources (Kurita, et.al, 2007). 

XML has gained a lot of attention as a result its powerful capability of storing and transporting 

data and the fact that it doesn’t require a defined schema for storing information in a database. 

Compared to DTD, XML produces more semantic information which is useful for XML 

document processing, primarily in formulation, optimization and evaluation of XML queries. 

Unfortunately, existing query processing systems and XML query languages use a little of this 

valued semantic information. Conventional techniques for optimizing query try to ascertain the 

most efficient sequence of operation for physical database system to function based on the 

syntax of a specific query and access techniques available (Lin, 1999). Query optimization is a 

method of reviewing a query to generate an execution strategy for the known query from the 

space of likely execution strategies. It is simply a way of finding the best execution strategy for 

a query given amongst possible queries. The aim of the work is to produce a mechanism for 

optimization of semantic query for the efficient retrieval of data in XML database system. 

In this paper, a system that uses the direct and multilevel indexing techniques is developed for 

the efficient retrieval of data from XML databases.  

 

 

mailto:alabereidayana@gmail.com


International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018   

www.iiardpub.org 

 

 

 

 

IIARD – International Institute of Academic Research and Development 

 
Page 49 

2. Review of Related Works 
Several query optimization techniques have been developed for optimizing queries in XML 

databases using its semantic constraints, among them are; Extended Dewey Labeling Scheme, 

Semantic Query Transformation (SQT) and Prefix on Demand (PoD), Map Reduce-based 

algorithm, Twig Table algorithm and Stack-based algorithm. 

 

The Extended Dewey Labeling Scheme (Lu, et.al, 2010) was developed to improve the 

efficiency of XML tree pattern matching, which broadens the existing Dewey labeling scheme 

to link the types and identifiers of elements in a label, and to prevent the scan of labels for 

internal query nodes from increasing query processing in (I/O cost). 

The Semantic Query Transformation (SQT) and Prefix on Demand (PoD) were developed to 

optimize XML query processing by making the most of the semantic constraints marked out in 

the XML schemas to optimize structural join and Twig queries (Le, et.al, 2013). 

Map Reduce-based algorithm, a dynamic algorithm that alters the label task procedure by 

focusing on a part of the XML data at the time of the labeling process, thereby enabling the 

decrease in the size of the label was developed for repetitive prime number labeling of XML 

data (Ahn, et.al, 2016). 

 

The Twig Table algorithm for twig pattern query processing was developed by to deal with the 

issues resulting from the absence of semantics on object, attribute and principles in approaches 

that are already in existence, semantics-based relational tables integrated disordered list of tags 

to help in the processing of the twig pattern query (Wu, et.al, 2011). 

Stack-based algorithm was designed to adequately respond to queries with the use of 

materialized views that closely encodes in polynomial time and space all the homomorphism 

(transforms a set into another that preserves in the second set the relations between elements of 

the first) from a view to a query (Wu, et.al, 2009). Space and time optimization was later 

developed by them with the use of bitmaps for encoding view materializations and applying 

bitmap operations in order to reduce the cost of evaluating the queries. 

 

3. Methodology and Design 

The methodologies used for this work are constructive research methodology and object-

oriented design methodology. The constructive research methodology was adopted because the 

processes involved in constructive research methodology (Lehtiranta, et.al, 2017); Selecting a 

practically relevant problem, obtaining a comprehensive understanding of the study area, 

designing one or more applicable solutions to the problem, demonstrating the solution’s 

feasibility, linking the results back to the theory and demonstrating their practical contribution 

and examining the general ability of the results were most appropriate for the research. The 

object-oriented design methodology (White, 1994) was used because the steps involved; 

Requirements analysis, Domain analysis, System design and Implementation were best 

suitable in achieving the aim of this work. Fig 1 shows the detailed architecture of the system.  

 



International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018   

www.iiardpub.org 

 

 

 

 

IIARD – International Institute of Academic Research and Development 

 
Page 50 

 
Figure 1: Detailed System Architecture 

 

In Figure 1, there are 4 levels of classification. The oval shapes represent the nodes, and each 

node has a unique index at the top of the node beginning from 1-13. The dotted line link the 

nodes, classifies them according to their data types and stores them as an array on each level of 

the architecture as shown in the rectangles. In level 1, Category A with index 2 and Category B 

with index 8 are classified as string with an array S[2,8]. In level 2, the node (Name, Milo) 

with index 3 and the node (Name, Coffee) are classified as Strings (S) with an array S[3,9], the 

node (Price, 1079.90) with index 4 and the node (Price, 200.30) with index 10 are classified as 

Decimal (DL) with an array DL[4,10], the node (Size, 3) with index 5 and the node (Size, 1) 

with index 11 are classified as integer (I) with an array I[5,11], the node (Exp_date, 2017-09-

23) with index 6 and the node (Exp_date, 2018-08-15) with index 12 are classified as date (D) 

with an array D[6,12]. In level four, the nodes (Size    Price) with index 7 and 13 simply means 

that the Price is functionally dependent on the Size which means that the Price of a product is 

determined by the size of the product. 

 

The system does two major things 

 It classifies the nodes at the same level of the architecture according to their data types. 

 From the index of each classification, new nodes are generated and stored as an array, 

thereby enabling access to the content of a node through the array. 

 

4. Implementation and Results 

The direct indexing and the multilevel indexing techniques described in this paper are fully 

implemented into an XML database. The implementation was done using Java 7. Experiments 

were run on an Intel® Pentium® dual CPU T3200 @ 2.00GHz machine with 4.00GB memory 

based on three aspects; retrieval of all the items in each category, retrieval of a particular item 

from each category and retrieval of different sizes of an item.  

 

 

 

 

 

 

 



International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018   

www.iiardpub.org 

 

 

 

 

IIARD – International Institute of Academic Research and Development 

 
Page 51 

Table 1: Average time of all the categories in each Indexing Pattern 

INDEXING PATTERN AVERAGE ACCESS 

TIME (SECS) 

Without Indexing 0.0116 

Direct Indexing 0.0062 

Multilevel Indexing 0.0062 

 

Table 1 shows the average access time of the total listing of all the categories without indexing, 

using direct indexing and multilevel indexing. The average time taken to access all the 

categories without indexing was 0.0116secs. In the direct indexing and multilevel indexing, the 

average time taken to access all the categories were 0.0062secs and 0.0062secs respectively. 

 

 
Figure 2: Graph showing the average time taken to access all the categories in each 

Indexing Pattern 

 

Figure 2 shows the graphical representation of the time taken in access all the categories in each 

indexing pattern. For without indexing, the average access time was 0.0116secs, the line 

dropped drastically in the direct and multilevel indexing to 0.0062secs. 

 

Table 2: Average time taken to access items from different categories using the Indexing 

Patterns 
INDEXING 

PATTERNS 

AVERAGE 

ACCESS 

TIME(SECS) 

CATEGORY A 

AVERAGE 

ACCESS 

TIME(SECS) 

CATEGORY B 

AVERAGE 

ACCESS 

TIME(SECS) 

CATEGORY C 

AVERAGE 

ACCESS 

TIME(SECS) 

CATEGORY D 

AVERAGE 

ACCESS 

TIME(SECS) 

CATEGORY E 

Without 

Indexing 

0.0038 0.0034 0.0036 0.0036 0.0034 

Direct 

Indexing 

0.0013 0.0016 0.0014 0.0015 0.0011 

Multilevel 

Indexing 

0.0018 0.0020 0.0018 0.0020 0.0017 

 

Table 2 shows the average time taken to access items from Categories A, B, C, D and E, 

without indexing, using direct indexing and using multilevel indexing. Without indexing, the 

average access time for categories A. 

 

0

0.005

0.01

0.015

Without
Direct

Multilevel

T
im

e
 (

S
e
c
s)

 

Indexing Pattern 



International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018   

www.iiardpub.org 

 

 

 

 

IIARD – International Institute of Academic Research and Development 

 
Page 52 

 
Figure 3: Graph showing the average access time of all items from different categories 

using the Indexing Patterns 

 

Figure 3 shows the graphical representation of the average access time of all the items from 

different categories using the different indexing patterns. For Category A, the average access 

time without indexing was 0.0038secs, for direct indexing, the average access time was 

0.0013secs and 0.0018secs for multilevel indexing. The average access time for category B were 

0.0034secs without indexing, 0.0016secs using direct indexing and 0.0020secs using multilevel 

indexing of all the items in category B. Category C has the average time without indexing as 

0.0036secs, 0.0014secs for direct indexing and 0.0018secs using multilevel indexing to access 

all the items in category C. For Category D, the average access time without indexing was 

0.0036secs, for direct indexing, the average access time was 0.0015secs and 0.0020secs for 

multilevel indexing. The average access time for category E were 0.0034secs without indexing, 

0.0011secs using direct indexing and 0.0017secs using multilevel indexing of all the items in 

category E. 

 

Table 3: Average time taken to access different sizes of an item using indexing patterns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 shows the average access time taken to access different sizes of an item without 

indexing, using direct indexing and multilevel indexing patterns category A, B and C.  

 

 

Without Indexing

Direct Indexing

Multilevel Indexing

0

0.001

0.002

0.003

0.004

 A
 B

 C
 D

 E

T
im

e 
(S

ec
s)

 

Categories 

Without Indexing

Direct Indexing

Multilevel Indexing

CATEGORIES INDEXING 

PATTERNS 

AVERAGE 

ACCESS 

TIME(SECS) 

SIZE 1 

AVERAGE 

ACCESS 

TIME(SECS) 

SIZE 2 

AVERAGE 

ACCESS 

TIME(SECS) 

SIZE 3 

Category A Without Indexing 0.0247 0.0250 0.0247 

Direct Indexing 0.0012 0.0012 0.0013 

Multilevel 

Indexing 

0.0018 0.0017 0.0018 

Category B Without Indexing 0.0163 0.0160 N/A 

Direct Indexing 0.0012 0.0012 N/A 

Multilevel 

Indexing 

0.0021 0.0021 N/A 

Category C Without Indexing 0.0183 0.0177 N/A 

Direct Indexing 0.0013 0.0012 N/A 

Multilevel 

Indexing 

0.0020 0.0021 N/A 



International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018   

www.iiardpub.org 

 

 

 

 

IIARD – International Institute of Academic Research and Development 

 
Page 53 

 
Figure 4: Graph showing average time taken to access different sizes of an item using 

indexing patterns 

 

Figure 4 has 3 lines representing the size 1, 2 and 3. Category A has 3 sizes and categories B and 

C has 2 sizes. From figure 4.12 in category A, the average time taken to access size 1 without 

indexing, using direct indexing an multilevel indexing were 0.0247secs, 0.0012secs and 

0.0018ssecs respectively. The average access time for size 2 (Category A) without using 

indexing, direct indexing and multilevel indexing were 0.0250secs, 0.0012secs and 0.0017secs 

and size 3 average access time were 0.0247secs, 0.0013secs and 0.0018secs respectively. 

Category B and C has 2 sizes, 1 and 2. In category B, the average access time for size 1 without 

indexing, using direct indexing and multilevel indexing were 0.0163secs, 0.0012secs and 

0.0021secs and size 2 average access time without indexing, using direct indexing and 

multilevel indexing were 0.0160secs, 0.0012secs and 0.0021secs respectively. In category C, the 

average access time for size 1 without indexing, using direct indexing and multilevel indexing 

were 0.0183secs, 0.0013secs and 0.0020secs and size 2 average access time without indexing, 

using direct indexing and multilevel indexing were 0.0177secs, 0.0012secs and 0.0021secs 

respectively. 

 

5. Discussion 

The direct indexing and multilevel indexing techniques were produced for optimizing semantic 

query to enable the efficient retrieval of data in XML database systems to reduce the time 

overhead in such a way that the memory allocation will be reduced. The direct indexing 

technique enables the user to access data from the database using its index id, and the multilevel 

indexing techniques enables the user to access data from the database using the index path. 

Experiments were conducted to evaluate the performance of the direct indexing and the 

multilevel techniques before and after applying the techniques. The results show that the direct 

indexing and multilevel indexing techniques are both efficient for the retrieval of data from 

XML databases with respect to time and memory allocation. However, there is a substantial 

increase in the run time of the multilevel indexing technique over the direct indexing technique 

when items are accessed from different categories and when different sizes of an item is 

accessed as a result of its index path. 

 

6. Future Works 
This paper has produced the direct and multilevel indexing techniques for the efficient retrieval 

of data from XML databases. Despite the fact that these techniques were able to reduce the 

overhead time and memory allocation, some areas are subject to further work. 

i. Modifying the multilevel indexing technique to make the memory allocation as reduced 

as the direct indexing technique 

0

0.005

0.01

0.015

0.02

0.025

W
it

h
o
u
t

D
ir

ec
t

M
u
lt

il
ev

el

W
it

h
o
u
t

D
ir

ec
t

M
u
lt

il
ev

el

W
it

h
o
u
t

D
ir

ec
t

M
u
lt

il
ev

el

 Category A
 Category B

Category C

T
im

e
 (

S
e
c
s)

 

Indexing pattern 

 SIZE 1

SIZE 2

SIZE 3



International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018   

www.iiardpub.org 

 

 

 

 

IIARD – International Institute of Academic Research and Development 

 
Page 54 

ii. Devising ways to modify the multilevel indexing technique to make the access time as 

efficient as the direct indexing technique  

 

References 

Ahn, J., HyukIm, D., Lee, T. & Kim, H. (2016). A dynamic and parallel approach for repetitive 

prime labeling of XML  with MapReduce. The Journal of Supercomputing. DOI 

10.1007/s11227-016-1803-y. 

Kurita, H., Hatano, K., Miyazaki, J. & Uemura, S. (2007). Efficiency Query Processing for 

Large XML Data in Distributed Environments. IEEE International Conference on 

Advanced Networking and Application (AINA’07). 

Le, D., Maghaydah, M., Orgun, M. & Zhong, Y. (2013). Optimization of XML Queries by 

Using Semantics in XML Schemas and the Document Structure. WISE , Part I, LNCS 

8180, pp. 343–353. 

Lehtiranta, L., Junnonen, J., Karna, S. & Pekuri, L. (2017). Designs, Methods and Practices for 

Research of Project Management.  ISBN 978-1-4094-4880-8. 

Lin, L. (1999). Design and Implementation of Semantic Query Technique Join elimination in 

IBM DB2. Cornputer  Science depsrtment, York University North York, Ontario Dec. 

Lu, J., Meng, X. & Ling, T. (2010). Indexing and querying XML using extended Dewey 

labeling scheme. Data Engineering and Knowledge Engineering, MOE, Renmin 

University of China, China doi:10.1016/j.datak. 

White, I. (1994). Booch Method: A Rational Approach. Benjamin-Cummings Pub Co (March 

1). 

Wu, H., Ling, T., Chen, B. & Xu, L. (2011). TwigTable: using semantics in XML twig pattern 

query processing. School of Computing, National University of Singapore. 

Wu, X., Theodoratos, D. & Wang, W. (2009). Answering XML Queries Using Materialized 

Views Revisited. New  Jersey Institute of Technology, USA. DOI: 

10.1145/1645953.1646015 · Source: DBLP 


